Sieciowe narzędzia do wizualizacji wiedzy w popularyzacji humanistyki cyfrowej

dr Radosław Bomba
Instytut Kulturoznawstwa UMCS
Centrum Badań Gier Wideo UMCS
RAWGraphs

The missing link between spreadsheets and data visualization.

USE IT NOW! FORK IT ON GITHUB
For continuous data such as time series, a bump chart can be used in place of stacked bars. Based on New York Times' interactive visualization.
Load your data

Paste your data here from other applications.

Copy and paste your data from other applications or websites. You can use tabular (TSV, CSV, DSV) or JSON data.
Create amazing visualizations in seconds.

CREATE A CHART
CREATE A MAP

or Create account & sign in
Now everybody in the team can create and publish charts.

Create amazing charts yourself in minutes with Datawrapper.

1. Copy & Paste your data.
 You can feed Datawrapper with any data from Excel, CSVs, PDFs or the web.

2. Select your visualization.
 Choose from stunning graph and maps templates to give your story an extra punch.

3. Watch your engagement rise!
 Datawrapper graphs can be embedded into any website or CMS with ready-to-use embed codes.
BECAUSE DINO DNA IS MILLIONS OF YEARS OLD, THERE ARE USUALLY GAPS IN THE CODE. OUR PALEOGENETICISTS USE DNA FROM RELATED SPECIES, SUCH AS BIRDS AND CROCODILES, TO FILL IN THE MISSING SEQUENCES.

THE TERRIFYING DINOSAUR CORN GENOME
Amblin Entertainment and Legendary Pictures, the studios that produced Jurassic World, try to inject genome science into the movie. Unfortunately, since we don’t quite know how to construct viable genomes of extinct species, much less grow the creatures themselves, we don’t know whether the depiction of the science is right. Perhaps theirs is exactly what a genome lab would look like in a dino-building facility.

But, we can get fewer things wrong. In the Creation Lab companion website, a CIRCOS image is used to illustrate a triceratops genome.

Unfortunately, this is an image of the B73 Maize reference genome (B73 RefGen_v1), as published in Nature’s The B73 maize genome: Complexity, Diversity, and Dynamics.

Schranz HS Ware D Fulton R et al. (2009) The B73 maize genome: complexity, diversity, and dynamics Science 326 (5955) 1112-1115
Medium tab-delimited table with mixed row and column labels.
#
+ column order (first row)
#
When uploading this file, make sure you check off the fields shown below.
#
order [] col with row order [x] row with col order
size [] col with row size [] row with col size
color [] col with row colors [] row with col colors

data 1 3 4 2 6 5

data | A | B | C | D | E | F | G
A | 105 450 92 96 5 101 195
B | 20 | 47 | 70 | 30 | 50 | 20 | 30
C | 113 350 94 217 22 89 287
D | 100 10 | 105 104 105 25 | 175
E | 20 30 | 120 146 58 48 | 205
F | 170 120 | 200 202 62 | 216 25
G | 205 170 | 185 49 61 | 256 207
visualize complex historical data

Start »

Create a new Palladio project by uploading your data from a spreadsheet or flat-file, or sure how Palladio works?

Load .csv or spreadsheet

Copy and paste out of your spreadsheets, drag-and-drop to upload tabular data (e.g., csv) Dropbox folder to create a new Palladio project. Not sure how to structure your data?
Every network tells a story
Build one quickly and easily to tell yours
Game of Thrones
<table>
<thead>
<tr>
<th>NODE</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
<th>VISIBLE</th>
<th>EPISODES</th>
<th>ACTOR</th>
<th>CLUSTERS</th>
<th>CONNECTIONS</th>
<th>RELEVANCE</th>
<th>BETWEENNESS</th>
<th>CLOSURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aegon VI</td>
<td>House</td>
<td>Targaryen</td>
<td></td>
<td></td>
<td></td>
<td>7.00</td>
<td>2.00</td>
<td>0.00</td>
<td>40.00</td>
<td>0.02</td>
</tr>
<tr>
<td>Targaryen</td>
<td></td>
</tr>
<tr>
<td>Aegon V</td>
<td>House</td>
<td>Targaryen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Targaryen</td>
<td></td>
</tr>
<tr>
<td>Aerys II</td>
<td>House</td>
<td>Targaryen</td>
<td></td>
<td></td>
<td></td>
<td>7.00</td>
<td>3.00</td>
<td>0.00</td>
<td>23.00</td>
<td>0.02</td>
</tr>
<tr>
<td>Targaryen</td>
<td></td>
</tr>
<tr>
<td>Alliser</td>
<td>Night's</td>
<td>Watch & wildlings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorne</td>
<td></td>
</tr>
<tr>
<td>Arro Hotah</td>
<td>House</td>
<td>Martell</td>
<td></td>
<td></td>
<td></td>
<td>5.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arianne</td>
<td>House</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
</tr>
</tbody>
</table>
nodegoat is a web-based data management, network analysis & visualisation environment.

Using nodegoat, you can create and manage any number of datasets by use of a graphic user interface. Your custom data model autoconfigures the backbone of nodegoat's core functionalities.

Within nodegoat you are able to instantly analyse and visualise datasets. nodegoat allows you to enrich data with relational, geographical and temporal attributes. Therefore, the modes of analysis are inherently diachronic and ready-to-use for interactive maps and extensive trailblazing.

Every bit of information that is entered into nodegoat can immediately be published through a public user interface. This allows the Encyclopedia of Romantic Nationalism in Europe to instantly publish articles and a wide range of research data. This data also includes a set of over 38,000 letters that can be queried through the public user interface. In this blogpost we discuss the steps we took to allow visitors to dynamically explore this dataset.
Image Macroanalysis in Javascript

Imj is a web-based movie barcode generator, montage generator, and image analyzer/plotter for creating visualizations for your large image sets. You can learn more about it and see some examples in this blog entry, and if you make something cool, submit it to the Imj Tumblr archive.

It's been tested mostly in Chrome on a MacBook Pro, and it works pretty well for me. With other platforms or browsers, your mileage may vary. It uses your CPU to process these images, so lots of really big images may take up all your memory and/or a lot of time. Your computer may freeze up; it probably won't catch on fire.

Generally speaking, smaller resolution images produce just as a good of a barcode, montage, or plot, so if you have the choice, work with smaller images whenever you can. If you have problems getting this to work, please read some browser- and platform-specific notes.

Step 1. Load your images.
Select up to 9999 individual image files or a directory of files. Add more file select widgets if necessary.

Select multiple image files OR Select a folder of image files (Chrome only)

Step 2: Choose your visualization style and set some options

Barcode Montage Plot
Step 1. Load your images.
Select up to 9999 individual image files or a directory of files. Add more file select widgets if necessary.

Select multiple image files

OR

Select a folder of image files (Chrome only)

Step 2: Choose your visualization style and set some options

Barcode Montage Plot

Canvas Width

5000 px

Canvas Height

1200 px

Smoothing

None

Apply Settings

Step 3: Review

Step 4: Watch it Happen
When the image is done loading, right-click and "Save As...", or use the download link above.
Voyant Tools is a web-based reading and analysis environment for digital texts.
nodegoat is a web-based data management, network analysis & visualisation environment. Using nodegoat, you can create and manage any number of datasets by use of a graphic user interface. Your custom data model autoconfigures the backbone of nodegoat's core functionalities. Within nodegoat you are able to instantly analyse and visualise datasets.
ODYSSEY

A simple way for journalists, designers, and creators to weave interactive stories
Hardcore DH

Casual DH
Front-end i back-end – początkowe oraz końcowe stadium procesu. Front-end jest odpowiedzialny za pobieranie danych od użytkownika oraz przekazanie ich do back-endu. Następnie back-end na podstawie tych danych wykonuje określone zadanie. Opcjonalnie front-end może pokazać użytkownikowi wyniki otrzymane od back-endu. Często stosowanym tłumaczeniem jest „fasada” i „wnętrze”.
Big digital humanities

1. Różne modele zaangażowania (badanie obiektów cyfrowych, narzędzi i ekspresji) i tradycje

2. Humanistyka cyfrowa jako liminalna przestrzeń kontaktu

3. Laboratorium humanistyki
Miękka humanistyka cyfrowa (Soft DH)

- nacisk na tworzenie otwartych sieciowych aplikacji i narzędzi
- intuicyjny interfejs
- łatwość obsługi i adaptacji do różnych modeli zaangażowania
- otwartość na “nie programistów”
- otwartość na krytykę zmiany i sugestie użytkowników
- perspektywy zastosowań poza badawczych
Dziękuję za uwagę!!!

dr Radosław Bomba
radoslawbomba@gmail.com
rbomba.pl